Interactions between substratum rugosity, colonization density and periwinkle grazing efficiency
نویسندگان
چکیده
Both surface texture and littorinid grazing are known to influence the establishment of many shallow-water benthic hard-bottom communities. However, the effects of these factors and their interactions have not yet been investigated in a quantifiable manner. This investigation aims to assess the interactive effect of both factors in a strictly standardized manner. Natural recruitment by diatoms, the barnacle Balanus improvisus and the tube-building polychaete Polydora sp. was monitored under a 2-factorial treatment: grazing by the periwinkle Littorina littorea (Factor 1; 2 levels: 1 or no snails per plate) on artificial recruitment plates of different initial surface rugosities (Factor 2; 5 levels: smooth, 0.1, 0.5, 1 and 5 mm rugosity elements). In the absence of grazers, barnacle recruitment decreased with increasing initial rugosity, polychaete recruitment peaked at intermediate rugosities, and diatoms exhibited contrasting recruitment patterns in an in vitro and an in situ experiment. When preferred recruitment sites coincided for Polydora and B. improvisus, a competition for space could be inferred from a negative correlation between the 2 species. However, when the overlap of requirements weakened on the 5 rugosities, the relationship was positive, but was not statistically significant. Grazing efficiency by L. littorea depended on initial rugosity, generally showing minimum values on intermediate rugosities which is attributable to a mismatch between radula dimensions and surface structures in these rugosity classes. Additionally, grazing effects tended to increase with higher prey densities. As all factors—initial rugosity, grazing, colonizer species—interact with each other, the outcome of recruitment under combined factors is difficult to predict from single factor effects.
منابع مشابه
Induced resistance to periwinkle grazing in the brown seaweed Fucus vesiculosus (Phaeophyceae): molecular insights and seaweed-mediated effects on herbivore interactions.
Herbivory is a key factor for controlling seaweed biomass and community structure. To cope with grazers, constitutive and inducible defenses have evolved in macroalgae. Inducible chemical defenses show grazer-specificity and, at the same time, have the potential to mediate interactions among different herbivores. Furthermore, temporal variations in defense patterns, which may adjust antiherbivo...
متن کاملSymbiosis relationship between some arbuscular mycorrhizal fungi (AMF) and Salsola laricina and its effect on improving plant growth parameters
The aim of this study was to examine the symbiosis relationshipbetween some arbuscular mycorrhizal fungi (AMF) and Salsola laricina (Chenopodiaceae), a non-mycotrophic plant speciesand its effect on improving plant growth parameters. Initially, the development of AMF density was monitored through two parameters including evaluation of mycorrhizal colonization of plant roots and density measurem...
متن کاملReef Communities in the Dry Tortugas (Florida, USA): Baseline Surveys for the New No-take Area
To understand the current community structure on reefs in the Dry Tortugas, we conducted specieslevel surveys of macroalgae, coral diversity, herbivorous and game fishes, urchins, and substratum composition (e.g., rugosity) in shallow (3to 5-m depth) low-relief reef and hardbottom habitats in October 2007. We had particular interest in the ecological process of herbivory inside and outside of t...
متن کاملBacterial colonization of particles: growth and interactions.
Marine particles in the ocean are exposed to diverse bacterial communities, and colonization and growth of attached bacteria are important processes in the degradation and transformation of the particles. In an earlier study, we showed that the initial colonization of model particles by individual bacterial strains isolated from marine aggregates was a function of attachment and detachment. In ...
متن کاملA trophic cascade regulates salt marsh primary production.
Nutrient supply is widely thought to regulate primary production of many ecosystems including salt marshes. However, experimental manipulation of the dominant marsh grazer (the periwinkle, Littoraria irrorata) and its consumers (e.g., blue crabs, Callinectes sapidus, terrapins, Malaclemys terrapin) demonstrates plant biomass and production are largely controlled by grazers and their predators. ...
متن کامل